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Abstract
Thisarticlcshcsws  howrational analysis canbcuscclto
minimize learning cost for a general class of statistical
learning problems. Wc discuss the factors that inftu-
ence learning cost and show that the problem of effi-
cient learning can bc cast as arescrurce optimization
problem. Solutions found inthisway can besignifi-
cantly more efficient than the best solutions that do not
account for these factors. We introduce a heuristic
learning algorithm that approximately solves this opti-
mization problem and document its performance in~-
provemcnts on synthetic and real-world problems.

1. lntrodudion
Machine learning techniques are valuable tools both in ac-
quiringimportant scientific conccpts and in support of deci-
sion making under uncertainty. Unfortunately, lcarningcan
involve a significant investment of resources, There maybe
monetary cost in obtaining data and computational cost in
processing it. Usually such factors areaddressedb  yinfor-
malorintuitive judgements  rather than a rational analysis
of the costs and benefits of alternative learning operations.

Thereis a significant learning cost in many diverse appli-
cation areas. In speed-up learning there is substantial cost
associated with processing each training example [Tadepal -
li92]). In some classification problems it is extremely ex-
pensive to obtain data (e.g. protein folding problems) and
it is essential to make the most effective use of what data is
available. Somewhat paradoxically, cost is also an issue
when there is an overabundance of data. In this case it is ex-
pensive to usc all of the data and one needs some criteria to
dccidchow  much data is enough to achieve a given level of
performance [Musick93].  I~inally, learning may involve
ethical issues, as when experiments require giving poten-
tially harmful treatments to human subjects. Under these
circumstances it is a moral imperative to utilize as few sub-
jects as possible and to quickly reco.gnizeanci  discard those
treatments that worsen the patients condition.

This article discusses factors that influence cost anti con-
siders how to use rational analysis (i.e., [Iloyle90, Rus-
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sel19 I ]) of these factors to minimim  learning cost, We dis-
cuss this in the context of parametric hypothesis selection
problems, an abstract class of statistical learning problems
where a system must select one of a finite set of hypothe-
sized courses of action, where the quality of each hypothesis
is described as a function of some unknown parameters (e.g.
[Gratch92,Greiner92,  Kaclbling93,Moore94,  Musick93]).
A learning system determines and refines estimates of these
parameters by “paying for” training examples.

We show how such problems can be cast as resource opti-
mization problems, anti that solutions found in this way can
be significantly more efficient than solutions that do not ac-
count for the cost of gathering informat  ion (more than an or-
der of magnitude), Surprisingly, standard hypothesis selec-
tion algorithms do not reason about information cost, and
are thus less cfficicnt then they migilt be. We introduce a ra-
tional hypothesis selection algorithm that approximately
solves the resource allocation problem and empirically doc-
un~cnt the analytically predicted improvements in efficien-
cy. This algorithm isquitegeneral  and can handle situations
where the cost of processing data is initially unknown.

2. Hypothesis Selection Problems

Hypothesis selection problems are an abstract class of
learning problems where onc hypothesis must be chosen
from a prcdcfined  set based on performance over an un-
known distribution of problems or tasks. Performance is
characterized by a hypothesis’ expcted utility over the dis-
tribution, which must be estimated from training ciata. Hy-
pothesis selections arc at thccoreof  many machine learning
approaches. I~or  example, the utility problem in speed-up
learning is a selection problem in which a problem solving
heuristic is ciloscn from a set of proposed candidates, where
expected utility is dcflned as the average time to solve a
problem [Ciratch92,  Cireiner92,  Minton88]. The af/ribute
selec(irw problem in classification learning is a problem of
selecting one of a set of attributes on which to split, where
utility is equatcci with information gain [Musick9~].  In re-
inforcement learning a system must select an action, where
utility is equated with expected reward [Kaelbling93].

Several factors affect the cost of idemt ifying a good selec-
t ion. I?orexample,  there maybe some cost in obtaining each
training example. Jhrthcrmore, there can be additional cost
for each hypothesis that is evaluated over a given training
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.,
‘ example.] ‘1’hechallengeistochooseexamplesancl  evalua-

tionsinsuchaway  astomaximizethe likelihoociofa  good
selection with a minin]um  of learning cost.

Choosing the best hypothesis is problemat ic as the under-
lying probability distributions are typically unavailable.
Rather than requiring a hypothesis selection algorithm to al-
ways select the best hypothesis, algorithms typically obey
some probabilistic requirement on the properties of the hy-
pothesis that they select. Several alternative requirements
havebcenproposed.  lnthispapcrweaclopt  thcprobablycq~-
proximately correct (l’AC) requirement favored by compu-
tational learning theory [Valiant84]. Under this require-
ment a hypothesis selection algorithm selects a hypothesis
that with high probability is close to the best,

The expected utility associated with a hypothesis can be
estimated by observing its performance over a finite set of
training examples. However, to satisfy the PAC require-
ment an algorithm must reason about the discrepancy be-
t wmm the estimated and true utility of each hypothesis. I~or-
mall y, let there be k hypotheses, 1.et H,SCI  denote the
cxpcctecl utility of the selected hypothesis and (without loss
of generality) let hi, i=l .,k–l,  be the expected utilit y for the

remaining hypotheses. I.et ;, be an estimate of the ex-
pcctccl utility of the hypothesis. The PAC requirement is
that hypothesis estiruatedto be best must be within some us-
er-spccifiedconstant  eofthcbcsthypothcsis  withprobabil-
ityl–& ltsufficestobound  theprobability  thatahypothcsis
is estimated to be worse than the selected hypothesis given
that it is in fact better, for each of the pair-wise comparisons:

Thus the problem of bounding the probability of error re-
duces to bounding the probability of error of each of thek-1
comparisons of flsc~ to Hi.

To assess these probabilities we must adopt certain statis-
tical assumptions. Inthisarticlc weadopt  thenormal  para-
Illetric I~lodcl forreasoning  abotlt statistical error.  This as-
sL]n)cs that the difference between the expcctccl utility and
cst imatcd utilit y of a hypothesis can be accurately approxi-
mated by a normal distribution (see [Hogg78]  for an expla-
nation of the robustness of this common assumption which
isgrounde.d  inthc Central l.in~itTheoren~).  q’hcexpccted
cost associated with processing data is also assumed to be
normal] y distributed. Choosing a different parametric mod-
el would change the subsequent analysis but analogous re-
sults should hold for the conventional moclc]s.

With the normality assumption the probability ies in Equa-
tion 1 arc a reduced to a function of the estimates, the num-
ber of examples, n, used for each estimate, the closeness pa-

1. For cxarnplc,  in classification lemming a potentirdly hwgc  scl of
examples Inust  bc pnrti(irrncd  for each hypothcsi?cd  spli(,  In speed-up
learning the lemming syskm may have to rc-scrlvc  the cxrmplc  problem
for each csmdidatc  heuristic.

ramcter E., and an unknown variance term, cr2. Variance
measures how much each observation can differ from its ex-
pccteci value, which can be estimated from the data.2 To
simplify the presentation we ignore the E parameter in the
discussion that follows ([ Chien94] offers more details). l?or
a given pair-wise comparison, &i, the (simplified) probabili-
ty of incorrect selection is:

‘i=a’(-(’’re-’’i)d  ‘2)
where the function O is the quantile function of the standard
normal distribution. Intuitively, I;quation  2 shows that the
probability y of a mistake diminishes as the difference in ex-
pected utility bet ween the hypotheses increases, as the nunl-
bcr of training examples increases, and as the variance of
each hypothesis decreases. This relationship can be used to
determine how many training examples to allocate to each
comparison. If we wish to achieve a given bouncl of ~, then
by simple algebra the number of examples needed for a giv-
en pair-wise comparison is:

O;,,,i
“’’’’” = (}i,f~,  - Hi)z [o’(d)]’ (3)

where@l  is the inverse of thequantile  function of the stan-
dard normal distribution.

While the variance and true expcctcd  utilities are un-
known, a class of statistical approaches called .wqumlial
approaches has been designed for such problems [Govinda-
rajulu81  ]. These techniques develop estimates of the urr-
known parameters from a small initial sample size and then
incrementally refine these estimates after each subsequent
training example. lior example, after some number of ex-
amples a sequential technique WOUICI  estimate that the hy-
pothesis  it will eventually select is the one with the current
highest estimated utility, Such techniques terminate sanl-
pling based on an estimate of the sufficient number of train-
ing examples. Section 4 introduces a secplential  hypothesis
selection algorithm that uses a sequential approximation to
}iquation  3 to deciclc when to stop sampling.

3. . ‘l’he ValLIe  of Rational I.earning
The PAC requirement constrains but does not completely
determine the behavior of a hypothesis selection algorithm.
Wc would like an algorithm to satisfy the requirement with
the minimum cost possible. Several of the factors that con-
tribute to the cost are unknown before learning begins. I?or
this reason standard (non-rational) hypothesis selection al-

2. Wc “block” cxrmphx  m in [Moorc94]  to fur(hcr  rcdacc  sampling
complexity. Blocking forms estimates by avcrwging  the diffcrcncc  in
utility bc(wccn hypotheses on each obscI-vcd example, which can sub-
stantially rcducc  the varizmcc  in the datfi when hypotheses arc related
(e.g. whca each hypothesis is a variant on a bnsic search control strate-
gy). lt is trivial to modify the algorithm to work for the case where it
is not possible to block data.
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Pigurc 1. An illustration of the diffcrcncc bctwccn equal and
optimal allocation with equal and unequal disparity indices.

gorithms  ignore these factors when making their selection.
This section discusses the relevant factors and shows that
they can bc folded into a single value, the disparity index.
Weshowthatinthcory an algorithm canachieve  largeper-
formance improvements by exploiting this information, if
only it were available, Comparable performance inlprove-
ments can be achieved in practice using sequential tech-
niques,  as wc show in the next section.

1 lquat ion 3 illuminates the factors that affect selection
cost. In order to satisfy the PAC requirement we must, for
each non-selected hypothesis, bound the probability that it
is better than the selected hypothesis. The total cost is is the
sum of the cost of processing each training example. Ilqua-
tion3  shows that the numberofexamples  allocated tothc
two hypotheses increases as the variance increases, asthc
cliff’erencc in utility between the hypotheses decreases, or as
the acceptable probability of making a mistake decreases.

The first two factors are determined by the environment,
but the last, the probability threshold associated with each
comparison, can conceivably vary and thus be placed unclcr
the control of the hypothesis selection algorithm. The algo-
rithm must only ensure that thcsurno fthesep  robabilitics
ren~ainlcs  sthan6(F.quatio  nl),  lfonccomparison  rcquircs
a great many examples and another very few, it seems possi-
ble that allowing greater error for the first and less for the
second might reduce tbctotal  cost. ]nfact,  allowing the al-
gorithm to judiciously allocate error to each comparison can
result in a substantial reduction in overall cost.

Reducing thccost  of selection can be cast as an optinliTa-
tion problem. Total cost is the sum of the number of cxanl-
plcs allocated to each comparison (from Equation 3) times
the average cost to process an example. 1.et c.fc~,i  denote the
average cost per example to compare the selected hypothe-
sis with hypothesis i. 1.et w bc the error level allocated to
the comparison. The optimal allocation of error can bc de-
termined by solving the following optimization problen~:3

3. This assumes that the cost of processing examples for 00C com-
parison is indcpcndcnt  of the other comparisons. A more complex anal
ysis is nccde.d to ffiithfull  y rcprcscrrt cases where there is significant
sharing of cost bc(wccn comparisons.

Pigurc 2: The potcnlial benefits of rational analysis,
Shows the ratio of equal allocation cost to optimal cost
for several error ICVCIS and number of hypotheses,

Rcsourcc  Optimization l’roblcm
k- 1

Choose w to minimize z ‘:’’” ,  [m-](rzj)]z
“r’”i  (JI$P, - 11’)i. I

k- I

Subject to the constraint that
x ffi<h
j. I

Of course in an actual hypothesis selection problem the
expcctcd utilit y of the hypotheses, and perhaps the variance
ami cost will bc unknown before learning begins. Without
considering such information the only reasonable policy is
to assign an equal error level to each comparison (i.e.
q=&[k-  1]). Ilowcvcr, comparing this equaf allocation
policy with the optimal solution shows that equal allocation
can bc highly sub-optimal. To scc this; consider the case
with three hypotheses, k=3, which results in two conlpari-
sons with error rx] and &al. The selection cost is:

l~l[q~  1(a1)]2 +IAIO1(C)  - a1)]2 (4)

c.T1’/,2u~f  /,/
where l~i =

(11,,, -  11i)2

The value D; is callecl the disparity index for comparison i.
To bc optimal, al must bc chosen so as to minimize the

total cost. The equal allocation policy assigns cxj equal to
8/2. Equation 4 indicates that the equal allocation solution
is optimal only in the case where the two disparity indices
are equal. This is illustrated in Figure 1, which shows the
cost equation as a function of o!],  first in the case where the
ciisparity  indices are equal, and then when there is a differ-
ence between their values. The minimum point under this
curve is the optimal cost and the value of al at this point in-
dicates the optimal error allocation. la contrast, the equal
allocation policy yields a cost that may differ significantly
from this minimum.

In practice it is unlikely that the disparity indices will be
equal all for comparisons. liven if the example cost is sinli-
lar for every hypothesis the variance and expected utilities
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ofhypothcse swillalnm stcertain  lycliffer. Theincfficiency
ofcqualallocalion  increasesasthc  diffcrenccsbctwccn dis-
parity inr.liccs increases. Theinefficicncy  alsoincrcascsas
with thenumber  of hypotheses. Bytaking  theclifferencein
disparity indices to the limit it can bc shown that fork hy-
potheses the rat io of equal allocation cost to the optimal cost
can be up to [dJ-1(8/[k–1 ])]2/[@l(6)]2. Theratio  can be
quite large asillustrated  in I:igure2. Thus, ignoring dispar-
ity information can result in costs up to an order of nlagni-
tuclc greater with as few as ten hypotheses under consiclcr-
ation. This result also shows that the ratio cannot grow
withoutbound  anci that equal allocation isnear  optimal for
cases with few hypotheses and a small error level,

4. lMionallt xamplcAl l o c a t i o n
If the disparity indices were known advance, an algorithm
could optimize thccost  ofselecting  a hypothesis. Although
this information is unavailable bcforelearnirrg  begins, with
ascqucntialapproach  thealgorithmcan  dcvelopincreasing-
1 y accurate approximate ions to this information in the course
of learning. These approximations can bealtnostascffec-
tivcasthc trLleinfor]~lation  inguiding learning behavior. In
this section we introduce a rational hypothesis selection al-
gorithm that exploits these approximations to minimize se-
lection cost, This is compared with an efficient non-rational
approach similar to Moore and Ice’s BRACE algorithm
[Moore94]. The superiority of the rational approach is doc-
umentcd  onar[ificial  anclreal-world data sets.

4 .1  Inkrval-Ilascd Sclcction  Algorit}~m
We first introciuce  the basic hypothesis selection approach.
Rational and non-rational algorithms derived from this ap-
proach differ in how they choose hypotheses to further eval-
uate. ~'healgorithlll  initially evaltlates allhypotbcsesovcr
a small initial set of no training examples. This is to develop
initial parameter estimates and to enhance the robustness of
the normality assumption. The algorithm then incrcnlcntal-
ly processes training examples, deciding to evaluate one or
more hypotheses on that example. I earning proceeds incre-
mentally until, to the required level of confidence, one hy-
pothesis c-dominates. The basic approach is as follows:4

With hypotheses HI ..H~
livaluatc  all hypotheses over nO training examples
While no selection

1.et H,cI be hypothesis with highest estimated utilit y

i. I
TIJEN select H,el

111 .S11 Obtain next example
I;valuate those hypotheses chosen according to
rational or non-rational policy as outlined below

4. Scc [Chicn94] for complete discussion of such rational and non-
rational algorithms, The probability is computed with equations rmlo-
gous 10 Equation 2.

~uol Allocotim  Policy. The non-rational algorithm fol-
lows the equal allocation policy. Iiach cycle through the
loop allocates an adclit ional example to a pair-wise conlpar-
i son if its probability y of error remains above the fixed level
of iY[k–  1 ]. Ikmtually every comparison will drop below
this error threshold and the procedure will terminate.

&&IrPinnl Rate ofReturtt Policy Using est i mates of the dis-
parity indices, the rational algorithm calculates the increase
in confidence and thccost  of allocating an additional exam-
ple to each comparison. At each cycle through the main
loop the algorithm allocates an example to the comparison
with the highest marginal  rate o~returt~. This is the ratio of
increased confidence to increased cost.

This rational policy tries to maximize the decrease in sta-
tist ical error pcr unit cost, although we cannot guarantee the
strategy achieves the optimal error allocation. Conlplica-
tions include the fact that estimates of the disparity factors
differ from their true value and the initial sample size pa-
rameter restricts the algorithm’s degrees of freedom. None-
theless, this policy has performed well empirically. The
marginal rate of return is estimated using an equation analo-
gous to Ilquation 2, substituting in estimated for actual util-
ity values. After processing the ?O initial training examples
the algorithm estimates the expected utility, variance, and
cost of the various comparisons. The change in error can be
estimated by considering how the error would change as-
suming the current paratneter estimates are correct:

“(-(fie-fii)fi)-q’(-(fip-fii)~)(’)
The estimated marginal rate of return for a comparison is

computed by dividing this est itnate of the reduction of error
by the estimated cost of processing an additional training
example.

4.2 lhnpiricd  llva]uation
Wc illustrate the performance of the algorithms on sin~u-
lated and real-world data. The first evaluation uses sinlu-
latcd data with high disparity to illustrate that the rational
algorithm achieves performance itnprovetnents conlpara-
ble to what is predicted by the theoretical analysis. The sec-
ond evaluation uses data from a NASA scheduling applica-
tion to illustrate the robustness of the approach on a
real-world hypothesis selection problem.

4.2.1 Simuhttcd  Data. A rational algorithm should sig-
nificantly outperform a non-rational approach when there
is a large difference between the costs, variances, or ex-
pected utilities of the various hypotheses. We test this hy-
pothesis for several number of hypotheses and error levels.
l;or all experiments e is set at 1.0 and 8 varies from 0.05 to
0.25, in 0.05 increments. We perform tests with tbrec, five,
and ten hypotheses. The training examples are randomly
generated: All utility values and example costs are nornlal-
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ly clistributecl according to some expected value and vari-
ance, denoted N(value,variance). I;or  all experiments, }11
is distributed N(74 ,50) with cost N(20,  1 ), H2 is distributed
N(72,50) with cost N(50000, 1 ). All remaini ng hypotheses
arc distributed N(5,50)  with cost N(20, 1 ). IJorcach  configu-
rationthealgorithms  arerun5000tin~es  andthereportcd  re-
sults are the average over these trials.

IOgure 3 summarizes the predicted and observed ejJcie//-
cymfio. Thisisthecostto selectusingequal  allocationover
the cost to select using rational allocation. Thepcrformancc
improvement due to rational allocation is surprisingly close
to the limit. This suggests that for this data set the rational
algorithm has identified a near optimal error allocation.
Note that for large error the observed efficiency drops bc-
lowthcpredictcd  ]evel. Thisisaconsequence  of theinitial
sanlplcsiz  cparanlcter~~.  Therational  algorithm is forceci
to take at least this many examples on every comparison,
while in this problem configuration less would sufficcto
achicvcthc  probability bound. Theimplication  isthatwhen
the hypothesis evaluation problem is easy (requires perhaps
fewer than no examples to make a selection) the efficiency
will be effected more by the choice of the initial sample size
than the allocation policy. An interesting issue we have not
sufficiently cxplorecl  is possible strategies for setting tbc
initial parameter size.

4,2.2 NASA Scheduling Data. The test of real-world
applicability is based on data drawn from a NASA schedul-
it~g application detailed in [Gratch93].  This data provides
a test of the applicability of the techniques. Both algorithms
assume estimated utility varies normally from the expected
utility. In fact, this common assumption is violatcxi by the
data as most of the scheciulingheuri sties are bi-nmclally dis-
tributed. This characteristic provides a ratbcr severe  test of
the robustness of both approaches.

The hcurist ic system was developed to schedule con~nlu-
nications between earth-orbiting satellites and ground-
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IJigarc  3. Shows predicted and observed efficiency of the ratio-
nal allocation policy (tbc ratio in cost bctwccn the non-ralional
and rational policies). ‘1’hc  ralional policy shows a significant in-
cremc in efficiency.

based antennas. In the course of development extensive
evaluations were performed with variant scheduling heuris-
tics. The purpose of these evaluations was to choose a heu-
ristic that generated satisfactory schedules quickly on aver-
age, This is easily seen as a hypothesis evaluation problem.
Ilach of the heuristics corresponds to a hypothesis. The cost
of evaluating a hypothesis over a training example is the
CPLJ time required to solve the scheduling problem with the
given heuristic. Theutilityofthc  training exampleis  simply
the negation of its cost. In that way, choosing a hypothesis
with maximal expected utility corresponds to choosing a
scheduling heuristic with minimal average cost.

The application involves several hypothesis selection
problems, four of which we use in this evaluation (A, B, C,
and 1)). Iiach selection problem consists of a set of schedul-
ing heuristics, and data on the heuristics’ performance over
about onc thousand scheduling problems. For the purpose
of these cxpcrimcnts the data sets are assumed to corre-
spond exactly to the underlying probability distributions.
An experimental trial consists of executing a technique over
examples drawn from one of these data sets. l~ach time a
training example is to be processed, some problem is drawn
randomly with replacement from the data set. The actual
utility and cost values associated with this schcctulingprob-
lem is used. As in the synthetic data, each cxpcrimcntal  trial
is repeated 5000 times and all reported results arc the aver-
agcof  thcsctrials.  In this data thccost  and expected utilities
of hypotheses are relatively close to each other so the differ-
ence between the disparity indices is relat ively small across
comparisons.

Iiach trial used an error level of 0.05 or 0.25 and E equal
to 4.0. The results are summarized  in Table 1. Ikm each al-
gorithm this shows the average number of examples re-
quired to select a hypothesis, the total cost of those exanl-
plcs, ancl the observc(i probability that the selection was
correct for each of the four selection problems.

Paramclcrs I\qual Allocation Rational Allocation cost

k F 8 11X cost Pr. Hx. cost pr. Ratio

A 3 4 0,25 180 277 1.00 7’7 120 1.00 2 3
0.05 908 1,391 1.00 648 998 1.00 1.4

l] 2 4 0.25 30 47 1,00 30 46 1,00 1.0
0.05 74 115 1.00 76 117 1.00 1.0

c 7 4 ().25 ]189 1758 0.88 779 1148 0.77 1.5
0,05 2,371 3,493 0.94 2,153 3,184 0.94 1.1

1) 7 4 0.25 3,274 4,993 0.93 2,24 I 3,429 0.88 j .5
0.05 7,972 12,037 0,96 7,621 11,583 0.94 1.0

“Mlc  1. Avcra,gc number of obscrva[ions,  cost, and probabili-
ty of correct selection for schc.daling data.

Both algorithms pcrforme.d  robustly. In each selection
problem the I’AC requirement was achieved m nearly
achieved. This result is particularly remarkable given the
data’s significant departure from normality. The rat ional al-
gorithm provides a modest improvement over the equal al-
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location algorithm on three out of the four selection prob-
lems. Thcimprovenlcnt  increased with higher error level
in accordance with theoretical predictions. In both the
schedulirrgand artificial data the rational algorithm tended
to exhibit statistical error closer to thcrequested bound. The
equal allocation strategies excessive conservatism is due to
its inflexibility in allocating statistical error in cases where
a hypothesis could be discarded with less than no datapoints.

While the scheduling improvements may seem modest,
there arethree points that mustbe  emphasized. l~irst, the
number of hypotheses was small and improvements should
growwith  thcnumbero fhypotheses.  Second, inabsolutc
tcrmsthcs avingsa resignificant. Iiorexamplc,t  he350ex-
amples saved in selection problem D translate into about fif-
tecnhours  of CPUeffort.  l;inally, innocasedid  thcrational
algorithmperform  worse. Thus there islittlc loss, andpo-
tential for substantial improvement with rational allocation.

S. Related Work and Conclusions

This analysis can bcextcnded in a numberof ways. In many
learning situations one may bc reluctant to assume normal-
ity. }Forcxample, when selecting attributes in a decision tree
alll~lltit~ol~lial ll~odel l~laybc l~lore appropriate.  Wcsuspcct
comparable results will hold for a wide range of statistical
models but further analysis is necessary. Selection prob-
lemscouldbc formalizedin ab ayesian statistical frame-
work asin[Moorc94,  Rivest88].  This would eliminatethc
need for an initial samplcbut require a rigorous encoding of
prior knowledge. Related tothis, Howard [Howard70] has
extensively investigated a baycsian framework for assess-
ing learning cost in the case of single hypothesis problems.

While this article has focused on minimizing cost in the
context of hypothesis selection, the ability to assess both the
benefits and costs of learning has been investigated in a va-
riety of contexts both inside and outside of artificial intelli-
gcncc. IJorexamplc  thetraclcoffbetwcen  goal-directed ac-
tion and exploration behavior has been studied in
reinforcenlcn  tlearnin  g[Kaelbling93]. Another active area
of investigation involves the selection of an inductive bias
for classification learning tasks, A weaker bias allows high-
er potential accuracy but requires more data. The selection
of an appropriate bias depends on the availability and cost
of obtaining training examples as well as usefulness of bet-
ter prediction (see [desJardins92]). The same issue arises
in neural networks and in statistics when one must choose
a network topology or statistical model that balances the
tradeoff between the fit to the data and the number of exanl-
plcs requirccl  to reach a given level of predictive accuracy.
l?inally, these learning issues can bc seen as part of the more
gem-al  area of limited rationality.  This is the problem of
developing a theory of rational decision making when in the
presence of limitecl reasoning resources [RLIssc1191, Wel-
lnlan92].

To summarize, we argue that learning algorithms must
assess both the benefits and costs of learning. We provide

a theoretical analysis of the factors that contribute to learn-
ing cost. By reasoning about a valuccalled  the disparity in-
dex a learning algorithm can achieve the same level of bene-
fit at substantially reduced cost. We introduce a heuristic
algorithm that empirically achieves the predicted perform-
ance improvements over a non-rational approach. While
the improvements on any given hypothesis selection prob-
lem may lie well below the theoretical limit, the rational al-
gorithm is unlikely to perform worse and may perform sig-
nificantly better. Therefore there seems little reason not to
adopt this or an analogous rational approach.
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